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Abstract — Test performance

¢ The HumBug project [1] aims to combat the spread of mosquito-borne diseases.

e We use a Bayesian convolutional neural network (BCNN) to successtully detect
mosquitoes from their acoustics in challenging real-world conditions.

* Previous work has not quantified uncertainty, which we require for field deployment
due to the variable nature of the target environment conditions.
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(a) Bednet with four smartphones positioned to trial the best (b) Bednet ockets to hold smartphones
location for recording mosquitoes. for recording.

Figure 1: Deployment in Tanzania (Oct 2020) to trial the effectiveness of acoustic mosquito
detection with low-cost non-invasive measures.

 Smartphones are placed in bednet corners to allow autonomous data collection.

* Anonymised phone recordings synchronise to a central server and database.

* The recordings are screened with Algorithm 1 to identity at-risk areas.

Algorithm 1 BCNN detection

1: Read 8 kHz mono wave file

Take sliding window log-mel transform (40 x 128 frames, each frame duration 64 ms)
Take N MC dropout samples from BCNN (2 conv/max-pool layers with 3 x 3 kernels)
Calculate mean probability pc, predictive entropy (PE), mutual information (MI)
Output the mean of pc, PE, MI per continuous section with pmosquito > Pthreshold
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Unlabelled data B

e Import the audio and predicted labels to screen detections in Audacity [2].

* We can accept low entropy, high posterior predictive probability detections in the
case where the audio background is noisy.

e Conversely, for good recording conditions we can accept higher entropy predictions
to encourage higher recall of mosquito events.
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Figure 3: BCNN predictions on unlabelled field data (Nov 2020) in Audacity in the form:
{Pmozz, PE, MI}. Two windows with mosquito present were correctly identified in this section of
audio, recorded in a similar arrangement to that shown in Figure 1.
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